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ABSTRACT
We believe datacenters can benefit from more focus on per-node ef-
ficiency, performance, and predictability, versus the more common
focus so far on scalability to a large number of nodes. Improv-
ing per-node efficiency decreases costs and fault recovery because
fewer nodes are required for the same amount of work. We believe
that the use of complex, general-purpose operating systems is a key
contributing factor to these inefficiencies.

Traditional operating system abstractions are ill-suited for high
performance and parallel applications, especially on large-scale
SMP and many-core architectures. We propose four key ideas that
help to overcome these limitations. These ideas are built on a phi-
losophy of exposing as much information to applications as possi-
ble and giving them the tools necessary to take advantage of that
information to run more efficiently. In short, high-performance ap-
plications need to be able to peer through layers of virtualization in
the software stack to optimize their behavior. We explore abstrac-
tions based on these ideas and discuss how we build them in the
context of a new operating system called Akaros.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.2.11 [So-
ftware Engineering]: Software Architectures

General Terms
Design, Management
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Datacenter, Custom OS, Akaros

1. INTRODUCTION
Until recently, most of the research on datacenter architectures

has focused on improving overall scalability rather than per-node
efficiency or performance [7]. Additionally, methods for achiev-
ing performance isolation within a single node have not received as
much attention in the context of datacenter applications. Because
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of this trend, most datacenters run commodity, off-the-shelf oper-
ating systems with few customizations that change the OS in any
significant way. Since all nodes run the same software on the same
OS, additional nodes can be easily deployed to supplement rising
demand. However, only focusing on scalability comes with a cost.

As recent work by Rasmussen et al. has shown [38], individ-
ual nodes in the data center tend to run far below their peak per-
formance capabilities. Indeed, by fine-tuning a set of machines
to efficiently execute a custom sorting algorithm called TritonSort,
they were able to perform 60% better than the previous winner of
the Indy GraySort sorting benchmark with only 1/6 the number of
nodes. In order to achieve these gains, they carefully balanced the
system’s resources and relied on application-level management of
memory buffers for I/O.

Additionally, the TritonSort algorithm’s parameters were hand-
tuned and would have to be recomputed if there were slight changes
to the application or the hardware setup. This tuning process would
have benefited from an operating system with abstractions that do
not hide details of the underlying system.

We believe similar inefficiencies are an artifact of the limited
abstractions provided to applications by commodity operating sys-
tems. Furthermore, existing operating systems have not been de-
signed with current hardware trends in mind. The move towards
large-scale SMP processors, multi-lane high speed networking cards,
hundreds of gigabytes of memory, and terabytes of disk per-node
provides a unique opportunity to rethink how operating systems
should be organized for these nodes. By customizing the node OS
to provide a few, well-defined abstractions that are specifically de-
signed for datacenter workloads on datacenter hardware, we be-
lieve we can retain existing scalability benefits with increased per-
formance, efficiency, and predictability. In this paper, we discuss
what type of abstractions we believe are necessary, why it makes
sense to push forward with creating them, and which ones we are
currently in the process of building.

In general, all of our abstractions are guided by a single underly-
ing principle:

Expose as much information about the underlying sys-
tem to an application as possible and provide them
with the tools necessary to take advantage of this in-
formation to run more efficiently.

Moreover, each abstraction is motivated by some combination of
four key ideas:

1) Allow applications to manage cores and threads separately. That
is, have the OS provide the abstraction of a core, rather than a fully
executable thread, allowing applications to create and manage their
own threads on top of those cores. An application does not lose its



core or the rest of its time quantum just because one of its threads
blocks.

2) Specialize cores to run with different time quanta for different
tasks. Given hardware trends towards large-scale SMP processors,
it is now possible to differentiate between cores made for low la-
tency and cores made for high throughput within a single system.

3) Provide an explicit block abstraction for moving data more ef-
ficiently between memory, disk, and the network. By forcing ap-
plications to work with blocks, rather than arbitrary memory ad-
dresses, the OS can optimize data transfers based on this abstrac-
tion.

4) Explicitly separate the notion of resource provisioning from re-
source allocation. By allocation, we mean granting a resource to
an application when requested. By provisioning, we mean guar-
anteeing timely allocation of future resource requests. Resources
that are provisioned but not yet allocated can be utilized for other
purposes until they are requested.

Abstractions embodying these ideas may be too complex to ap-
peal to all cloud programmers, especially those who focus on ba-
sic application-level development. However, high performance li-
braries and applications, such as the key-value store that those high-
level programmers depend on, can be written by experts to benefit
from our abstractions.

Although these abstractions could be built into a commodity OS,
we have chosen to explore them in the context of a new operating
system, Akaros. In general, it is undesirable to run a customized
OS if a commodity OS can perform most of a user’s tasks reason-
ably well. The added complexity, maintenance costs, and unpre-
dictability when networked with other machines outweigh any of
the added benefits. However, working with a new OS gives us a
clean slate approach to implementing all of our abstractions with
full knowledge of how they interact with other aspects of the sys-
tem. Currently, we have prototype implementations for most of our
abstractions. Details about Akaros, including justification for why
it makes sense to introduce a new OS in the context of the datacen-
ter, are discussed in more detail in Section 3.

2. ABSTRACTIONS
Operating systems fulfill several roles. Two key roles are 1) pro-

viding abstractions to programs and 2) managing the system’s re-
sources. The manner in which operating systems fulfill these roles
ought to be revisited for datacenters.

Abstractions are useful for programming and building systems,
but they can negatively impact performance. A classic example
is the awkwardness between operating systems and databases, in
which the (hidden) file cache interferes with the buffer manager [46].
A more subtle example is how the synchronous write() system
call prevents zero-copy I/O [17]. The abstraction presented to pro-
grams is that the write() call completes before the syscall re-
turns. However, the kernel would like to delay and reorder writes to
achieve higher performance. Since the program thinks the write()
completed, it may modify the write buffer, and the kernel must
make an extra copy to support this semantic.

Datacenter applications can also suffer from obfuscating abstrac-
tions. Consider Amazon’s Elastic Block Store (EBS) [43], which
provides block level storage volumes to EC2 instances. Its inter-
face appears as a regular block device, though the underlying per-
formance implications are hidden from the Guest OS, and therefore

the application running on top of it. However, EBS is a multi-tenant
service, meaning multiple instances can be using the same underly-
ing disks [14]. Unrelated users of the system can interfere with each
other in unpredictable ways. This software interface hides perfor-
mance details, limits predictability, and turns performance tuning
into even more of a black art [27].

Instead of hiding details through abstraction, the software stack
ought to be transparent for applications that want to maximize their
performance. Virtualization of resources is useful, but programs
need the ability to peer through those layers of virtualization, while
being able to fall back on sensible defaults. Many of the novel fea-
tures of Akaros build on this philosophy of transparency. The ker-
nel exposes information to a process about the underlying system
and its resources and provides an API to control those resources.

Exposing information and details of the software stack inher-
ently increases userspace’s complexity, but high performance data-
center applications warrant this extra effort. We mitigate the com-
plexity, to some extent, with userspace library code that provides
common routines and sensible defaults for the many options ex-
posed by the kernel. The complete set of interfaces are there for
programmers who want to use them, however, and as with the
HPC community, datacenter programmers include people who care
about achieving the best performance possible. For instance, Google
is extremely sensitive to the performance of its important datacenter
workloads; a 1% performance degradation in a new Linux kernel is
unacceptable [42].

In addition to supporting transparency of the software stack, an
operating system ought to provide new mechanisms, abstractions,
and resource management policies to support datacenter applica-
tions. In the following sections, we discuss some of these changes
to operating systems that we are building into Akaros.

2.1 A New Process Model
Operating systems ought to give processes visibility of and con-

trol over their resources so they can maximize their performance.
The traditional process abstraction obfuscates the details of access
to the CPU, making thread scheduling difficult at best. A process
appears to run on a virtual processor, and from the perspective of
the process, it is always running. However this is not true, and it is
even further from the truth for processes that run on multiple cores.

There are many other problems with existing process models.
Threads of a parallel process in traditional systems are scheduled
at the mercy of the operating system, and the process is not aware
of which threads happen to be running in parallel at any given time.
Tasks/threads of a process can be blocked in the kernel, can page
fault, or can be descheduled; any of these result in the applica-
tion losing control. Additionally, cache performance suffers when
threads are unexpectedly context-switched. When processes do not
control their thread scheduling, low priority threads can run at the
expense of high priority threads and lock holders can be preempted.
Even if the kernel knew exactly which thread to run next, thread
context switches require the overhead of system calls or timer in-
terrupts and work by manipulating per-core kernel run-queues. Fi-
nally, current systems needlessly couple I/O concurrency and par-
allelism in one threading abstraction (e.g. a pthread). We discuss
this further in Section 2.2.

To address these problems, Akaros introduces the abstraction of
the many-core process (MCP). MCPs share many similarities with
traditional processes. They run in the lowest privilege mode, are
the unit of protection and control in the kernel, communicate with
each other, and are executing instances of a program. We extend
this model in the following ways:



• All of an MCP’s cores are gang scheduled [22].
• A process will always be aware of which cores are running, and

it will not be preempted without warning.
• There are no kernel tasks or threads underlying each thread of a

process, unlike in a 1:1 or M:N threading model.
• Traditionally blocking system calls are asynchronous and non-

blocking.
• Faults are redirected to and handled by the process, typically via

Akaros user-level library code (similar to Nemesis [25, 32]).

MCPs allow applications to perform their own scheduling of
threads onto the cores granted to it by the operating system, which
is known as two-level scheduling [21]. These schedulers can lever-
age composable two-level scheduling frameworks such as
Lithe [37]. One example of a custom second-level scheduler is
Capriccio [48], which is a thread scheduler for webservers capable
of supporting 10,000s of threads. The original version of Capric-
cio was for uniprocessors; Akaros has a port of Capriccio for SMP
machines and MCPs. For legacy applications that do not want to
modify their code, we also provide a simple pthread library that
interfaces with our MCP libraries.

An MCP’s cores are gang scheduled, and the kernel will not in-
terrupt those cores. This isolation allows better cache utilization
and fast synchronization among cores. For instance, a program can
use spinlocks without the kernel preempting the lock holder. Fast
synchronization enables more predictable and higher performance
for access to shared data structures such as key-value stores. In ad-
dition to gang scheduling, processes can register event handlers for
low-latency tasks that may run asynchronously from the gang. We
discuss this more in Section 2.3.

The gang-scheduled cores in Akaros provide the abstraction of
a virtual multiprocessor, similar to scheduler activations [8]. Two
major differences between MCPs and scheduler activations are that
there is no kernel task underneath each core and that the system call
interface is asynchronous.

2.2 Asynchronous Syscall Interface
Akaros has a strictly asynchronous syscall interface, which al-

lows applications to maximize performance and throughput. In a
sense, all system calls are inherently asynchronous and providing
a unified asynchronous system call interface allows us to expose
this fact to applications. For both simplicity and flexibility of the
kernel, all system calls are submitted and completed via the same
asynchronous interface, even ones that usually complete immedi-
ately instead of blocking.

The combination of processes not losing control of their cores
and an asynchronous kernel interface allows the decoupling of I/O
concurrency from parallelism. Currently, both of these concepts
are bundled by oversubscribing pthreads or processes, hoping that
there are both enough unblocked threads to do work and not too
many unblocked threads to cause thrashing. A second-level sched-
uler like Capriccio can handle this in an application-specific way,
instead of relying on the kernel to do its best.

This decoupling also allows the system to support larger numbers
of outstanding I/Os. More outstanding I/Os means more opportu-
nities to reorder block requests and higher throughput. A program
can use lightweight threads that “block” in the second-level sched-
uler on an outstanding asynchronous system call. The application
retains control of its core and can continue to work, including issu-
ing more I/Os. User-level blocking is not limited to system calls or
I/O; threaded programs also can block on user-level semaphores.

Not all applications will want to be threaded. An asynchronous
system call interface allows applications to be written in an event

driven manner; the kernel does not care one way or another. This
detail is important when you consider how applications in current
OSs are adapted to take advantage of asynchrony. There are a va-
riety of mechanisms, such as epoll or AIO, that depend on whether
your file descriptor is a socket or a disk-backed file. A unified asyn-
chronous interface can handle all of these at once, as well as allow-
ing a synchronous interface to be built on top of it.

2.3 Kernel Scheduling Granularity
Ideally, applications would like both high throughput and low la-

tency. With clever kernel scheduling and a large number of cores,
an operating system can provide both. The Akaros kernel sched-
uler achieves this by using different time quanta on separate cores,
based on their workload. In traditional operating systems, the time
quantum is the same throughout the system, and larger quanta mean
higher throughput at the expense of the responsiveness of other pro-
cesses. We denote cores as either coarse-grained cores (CG) or
low-latency cores (LL), and set the scheduling quanta accordingly.

MCPs are scheduled with a coarse granularity (100ms) on the
CG cores, which are left alone by the kernel. Application event
handling, interrupt handling, single-core processes (SCPs), and ker-
nel housekeeping tasks are scheduled on LL cores at a fine granu-
larity (1ms or less). The coarse granularity implies less overhead
and better cache performance due to fewer context switches. Fewer
context switches also cause fewer TLB flushes. An MCP reaps
greater benefits from isolation and gang scheduling when it is given
a larger time quantum. The LL cores provide a low response time
that is decoupled from the scheduling quantum of the CG cores.

In the same way that the operating system treats cores asymmet-
rically, applications can structure themselves asymmetrically. Pro-
grammers can split their applications into low-latency components
and high-throughput components and schedule them on the appro-
priate cores. Low-latency components will be run as event han-
dlers, dealing with tasks such as user-level network protocol ACKs
or waking up the rest of the process. These handlers run regardless
of whether or not the MCP’s gang is scheduled. By separating the
low-latency tasks from the bulk processing, applications can fully
utilize the resources of the system.

For tasks that demand everything the system can provide, the
kernel can pin cores for a process, meaning that it will never be
descheduled or interrupted. Applications that are unable to toler-
ate any latency when waking up their cores or that actually are the
highest priority can be pinned. Pinning is related to resource provi-
sioning and is subject to the needs of the user/system administrator;
provisioning is discussed further in Section 2.6.

2.4 Memory Management
Recent work has shown that a distributed system can improve

performance by orders of magnitude when it exclusively uses in-
memory data [36]. Even in those cases where data cannot fit in
memory, giving applications control over their resident set can sig-
nificantly improve Hadoop job completion time [6]. Currently,
generic LRU-based memory swapping policies cannot provide suf-
ficient memory isolation for these sensitive applications. For this
reason, RAMCloud has opted not to utilize any processing capac-
ity on their data storage nodes because of their extreme sensitivity
to latency variation and page faults [36]. Similarly, other systems
over-provision to ensure a certain level of responsiveness, leading
to wasted power and machine resources. We believe a class of
highly customized solutions can benefit significantly from applica-
tion-specific memory management. To do so, the operating system
needs to provide abstractions that give the application visibility and
control of its memory. This solution fits our general philosophy of



exposing information and providing interfaces for applications to
control their resources.

High performance applications need to control what virtual mem-
ory pages are resident in RAM. Akaros allows applications to pin
pages, up to a certain amount of RAM, similar to the mlock()
POSIX call. This limit is a resource provision, not an allocation.
Individual applications can choose which pages to keep resident,
within that limit.

Due to how the MCP interface reflects faults back to programs,
an application will never lose a processing core unexpectedly in the
case of a page fault. The kernel exposes the current page mapping
for the application through a read-only structure in a shared infor-
mation page. Upon each page fault, the application memory man-
ager, which could be co-located with the application thread sched-
uler, is invoked for two distinct purposes. First, it determines which
pages to evict if there is memory pressure, and then it issues an
asynchronous I/O request for the page that is faulting. Additionally,
it schedules the next unblocked user-level thread to run, avoiding
the traditional overhead of another kernel-level context switch.

An application-level memory manager is also important in low-
latency processing. To ensure a low-latency core’s responsiveness,
applications need to ensure the data used by LL handlers are pinned
in memory. This would be difficult to enforce on a global level,
since the kernel has little application-specific knowledge.

2.5 Block-level Data Transfer
Cloud computing has enabled massively parallel processing of

large amounts of data in ways that were not possible before. Large-
scale data processing has placed higher demand on the operating
system to provide better support for large data movement. Com-
modity OSs, such as Linux, have tried to address this demand by
adding various system calls such as sendfile(), splice(),
and vmsplice() to reduce the number of copies that typically
affect large transfers. These system calls are able to avoid copying
data to a process’s address space due to the limited usage model
they support. We apply this level of specialization to other types of
data transfer.

Specifically, we argue for a more explicit interface that allows
users to directly control page-sized blocks. Various subsystems
such as storage, networking, and memory management should ex-
pose primitives for direct manipulation of these large blocks. Using
this interface, applications can carry out large, zero-copy transfers
in units of (page-aligned) blocks, and doing so will allow better in-
tegration with the application-directed memory management prim-
itives described in Section 2.4

Large transfers can occur between application memory, disks,
and the network. Although not yet implemented, we plan to pro-
vide zero-copy I/O primitives in Akaros that transfer blocks of data
between these source and destination pairs. We will use page-
remapping techniques [18] for transfers to and from a process’s
address space. For example, data can be transfered directly from
the network to application memory, and subsequently the data can
be modified in-place and transfered directly to disk. For transfers in
which application memory is not the destination, we allow applica-
tions to express how the transferred data should be cached. Specif-
ically, caching streaming data with low temporal locality can neg-
atively impact other applications by putting pressure on the OS’s
page cache.

We examine three specific cases of data transfer where special-
ization leads to more efficient implementations in certain applica-
tion scenarios.

• Disk-to-network transfer We envision this mode to be useful

for serving large media files that are infrequently accessed. Many
datacenter applications can also use this transfer mode to achieve
background replication.
• Network-to-network transfer Various data processing frame-

works require a common set of large data to be distributed effi-
ciently among many machines. Notably, the Hadoop framework
uses a technique called pipelining to distribute data among the
nodes. Each node receives data from the network and relays
it to its neighbor. This reduces the bandwidth requirement of
the HDFS node holding the data. Using this primitive, the net-
work stack can redirect traffic from the input buffer to the output
buffer, with low latency and no cache pollution. This can often
be coupled with the Network-to-disk primitive to achieve effi-
cient replication.
• Network-to-disk transfer Many network-attached storage nodes

expose a block-level interface, and one of the most common op-
erations is to write from the network to disk blocks. Many of
these writes are the result of backup and replication operations.
They are not subsequently followed by read operations. The net-
work stack can intelligently allocate and assemble packets to al-
low disk DMA operations to directly read from network buffers
and eliminate the extra copy.

These primitives enable other, higher-level abstractions to be
built at the application level. One abstraction that we plan to ex-
plore is replicated memory regions. In many eventually consistent
systems such as Dynamo [16], the background replication opera-
tion can significantly impact the quality of service of foreground
operations if it contends for valuable resources, such as page cache
space and network bandwidth. Such an abstraction can lower the
effort required to build large, eventually consistent systems, and al-
low the application to focus on the policies regarding the synchro-
nization interval and other consistency constraints. A consistent
view of a block across many machines can also lead to protocol-
level optimizations in TCP that can better take advantage of Ether-
net jumbo frames for more efficient transfer of blocks.

A large body of previous work has had similar goals of reducing
the number of times a memory buffer gets copied as well as reduc-
ing the kernel’s involvement in network packet processing. Most
notably, Remote Direct Memory Access (RDMA) is a standard that
tries to provide DMA semantics in a networked environment. It en-
ables network adapters to transfer data directly from one machine’s
user space buffer to another machine’s user space buffer. However,
in RDMA, each pair of sender and receiver needs to allocate ded-
icated buffers for remote writes and has to pin them in memory to
achieve efficiency. The number of queue pairs can quickly grow on
the order of O(n2) as the number of machines increases. This can
create memory pressure on the rest of the system.

Instead, we advocate allocating network buffers for each service
only on the server side, allowing remote clients for the same service
to share a buffer queue. Once the remote client is determined for
a given transfer, we can page-remap the payload to the appropriate
destination. This technique offers two advantages. First, it reduces
the memory footprint of the network subsystem. Second, when
compared to the RDMA model, it further decouples the server from
the client. The server is simply operating on an incoming queue
of requests with page-sized payloads attached, instead of receiving
remote memory writes. This suits the looser coupling of machine
nodes in a cloud computing environment, compared to traditional
HPC systems. We sacrifice the convenience of the remote write
semantic offered by RDMA, which is tolerable since nodes in a
datacenter often are not peers, but are clients and servers.

Additionally, RDMA relies on polling of memory to achieve its



low latency, thus sacrificing some CPU utilization in the process.
This is an ideal trade-off in the HPC domain where the dedicated
CPU/node cannot make progress while waiting for I/O to finish.
Cloud computing workloads have more fine-grained sharing of ma-
chine resources. Our approach leverages the asynchronous system
call interface and its notification mechanism to provide relatively
low-latency transfers while keeping CPUs free for other tasks.

2.6 Resource Management
We provide abstractions to provision resources for guaranteed

use by a process.1 Resource provisioning is different than resource
allocation, in that provisioned resources are only marked for exclu-
sive use by a process — a separate allocation step is still needed to
actually hand them out. Once resources are allocated to a process,
they are completely isolated from the resources allocated to other
processes.

Resource provisioning provides a holistic approach to sharing
resources across multiple processes. We define resources as any-
thing sharable in the system, including cores, RAM, cache, on- and
off-chip memory bandwidth, access to I/O devices, etc. Since re-
source provisioning is a higher level abstraction, it relies on some
combination of hardware and software mechanisms to control the
actual partitioning, isolation, and QoS of these physical resources.
Some of these mechanisms are already available (e.g. cores, RAM,
and caches via page coloring), while others may only be available
in future hardware (e.g. off-chip memory bandwidth).

Although sharable, not all resources of a specific type are neces-
sarily created equal (e.g. applications may prefer to receive pairs
cores that share an L1 cache for better cache affinity). Moreover,
certain combinations of resources interact with one another, such
that provisioning one type of resource without provisioning another
doesn’t really make sense. For instance, provisioning all the CPUs
on a system will not help if you are not able to provision any RAM.
The interfaces we provide will be designed to take these consider-
ations into account. To fairly provision or allocate multiple hetero-
geneous resource types, the kernel can use a Dominant Resource
Fairness (DRF) scheduler [23].

The primary advantage of resource provisioning is that it allows
applications to reserve the resources they need to meet some la-
tency requirement, while at the same time allowing the OS to allo-
cate those resources to other processes when they are not currently
being used. The implicit contract is that provisioned resources are
made available to the process to which they are provisioned im-
mediately upon request (through revocation from another process,
if necessary). The OS may also provision resources to a group of
processes, allowing for flexible administration policies.

Processes can always allocate more resources than have been
provisioned for them, but there is no guarantee that they will be able
to retain those resources if the system becomes over-utilized. Al-
lowing processes to provision some resources and only receive oth-
ers via ’best-effort’ leads to better utilization of system resources.
It reduces the hard problem of deciding when to revoke a resource
from a process to the simpler problem of deciding which processes
can provision resources in the first place (i.e. admission control).

We expect the under-utilization of provisioned resources to be
common for interactive applications or applications that deal with
audio/video, sensor data, or networking. Yielding under-utilized
resources also provides opportunities for energy efficiency [30].
Policy decisions, such as from which process to revoke a resource,
or how to encourage applications to yield under-utilized resources,

1Although we currently use processes as the entity to which we
allocate resources, any reasonable resource container could be
used [9].

are beyond the scope of this paper.

3. THE WAY FORWARD
We have introduced several ideas for improving operating sys-

tems for datacenter nodes. In this section, we discuss our rationale
for exploring these changes in the context of our own operating
system, discuss our relationship to virtual machine monitors, and
provide a brief status report on Akaros. Our goals are modest: ex-
plore the ideas presented in this paper, rather than try and replace
all datacenter operating systems.

3.1 Why a New Operating System?
In theory, someone with sufficient time and engineering exper-

tise could implement our ideas in a commodity OS (which would
be fine with us). For example, Google heavily modifies Linux [15]
and has the man power to easily build some of these abstractions.
However, certain abstractions, such as the MCP and the way it han-
dles kernel stacks/tasks, are far more difficult to build into an exist-
ing operating system. With a small codebase that we fully under-
stand (like Akaros’s), we are able to implement broad and invasive
features quickly. Furthermore, most of our ideas both work well to-
gether and need each other. For instance, zero-copy I/O and MCPs
both require our asynchronous syscall interface. Instead of building
all of our ideas into Linux, it is simpler and cleaner to build them
all into their own OS.

More importantly, when building a new operating system, our
ideas are not as tied to the way traditional operating systems work.
Although some level of compatibility is important, we are free
to design interfaces and mechanisms from a cleaner slate. For
this reason, a new operating system may also serve as a better re-
search platform. We hope to influence future designs of similar
customized systems through this platform.

That said, the datacenter environment provides several advan-
tages to actually deploying a customized system, making it more
reasonable to run a new OS instead of simply using it as a research
platform.

• Compatibility: Compared to general-purpose desktop and server
OSs, datacenter OSs need to support a smaller subset of hard-
ware and software. Specialized systems like Akaros can provide
immediate value by working with other legacy systems if they
implement the same networking/RPC protocol. For instance, a
node running a key-value store simply needs to respond to re-
quests with the appropriate packets. It does not matter whether
the node is running Linux, Akaros, or even Multics.
• Control of infrastructure: Datacenters typically exist under a

single administrative domain, giving system administrators com-
plete control over their networking infrastructure. Some of our
new abstractions, such as fast block transfers, can be easily uti-
lized and are far more effective when the entire infrastructure is
optimized for it. Specifically, our fast block transfers would ben-
efit from page-sized payloads and Ethernet jumbo frame support
in the network switches.
• Deployment Strategy: Due to the controlled environment and

specialization of nodes within a datacenter, Akaros can be incre-
mentally deployed on only the subset of nodes that will benefit
from it. For instance, a few of the nodes dedicated to a specific
application or support system, such as a key-value store, can be
replaced with the application running on Akaros. Administra-
tors can evaluate the deployment of new applications on Akaros
at small scale, before gradually rolling it out to more systems.

3.2 What About Virtual Machines?



We are often asked how our proposals differ from virtual ma-
chines. Virtual machines are a separate piece of technology and
are largely orthogonal to the issues we bring up. Like similar inter-
faces, such as the POSIX interface, virtual machines provide useful
functionality but can limit performance.

Traditional virtual machines, such as Xen or VMWare, hide de-
tails of the underlying system from their Guest OSs and applica-
tions. Their layers of abstraction (especially when stacked on top
of existing OS interfaces) further interfere with optimizations re-
quired for high performance applications. For instance, existing
VM interfaces are incompatible with our MCP abstraction. Addi-
tionally, virtual machines create their own problems, such as dupli-
cated memory. There exist attempts to mitigate these effects, such
as Content-Based Page Sharing in VMWare ESX Server [49] and
Kernel Samepage Merging in Linux’s KVM [2]. Other features,
such as zero-copy I/O, are more difficult to build with the addi-
tional layer of abstraction. These limitations are not inherent to
virtual machines, but their traditional interfaces are lacking. High
performance virtual machines ought to utilize our abstractions and
expose them to their applications, in a heavily paravirtualized man-
ner.

Alternatively, we could bypass virtual machines altogether and
use native OS mechanisms that provide the benefits we need from
VMs for a given datacenter task. Virtual machines are currently
useful for performing a variety of tasks, including (but not limited
to):

• A convenient bundling of OS, libraries, and supporting programs
that can run on any physical machine.
• Server consolidation
• Containers for running untrusted code
• Checkpoint/restart and live migration
• Operating system development

Many of these tasks rely on secondary features of virtual ma-
chines: namespace isolation and the ability to bundle code, data,
and configuration. Virtual machines are useful because they are
an alternative solution to problems that traditional OSs have not
solved. However, these features now exist in other products, such
as Linux VServer [45], which is a scalable, high-performance al-
ternative to virtual machine monitors. Linux Containers [4] form
another lightweight solution, providing resource management and
isolation by using cgroups and the VFS namespace facilities. Even
checkpoint/restart is being built into Linux [3].

There are still reasons to use virtual machines; EC2 is one such
example. Legacy software or other restrictions may require Win-
dows, Linux, BSD, etc, and running this software requires a virtual
machine interface. Virtual machines also provide another layer of
defense for running untrusted code. However, in many cases using
a virtual machine may be overkill and should only be used after
carefully considering the costs and benefits.

Despite our concerns about traditional virtual machines, we can
support VMs while minimizing interference with application per-
formance by using the same abstractions for a paravirtualized VM
that we use for our MCPs. In future work, we plan to support vir-
tual machines as processes in Akaros, much like Linux runs VMs
with KVM [29]. MCPs will map naturally to Guest OSs, which
expect their cores to be running all the time. In one such scenario,
Akaros could run as both the VMM and a paravirtualized Guest OS,
exposing information all the way through the software stack to the
Guest process. These VMs can run side-by-side with other MCPs;
we bring the same paravirtualization philosophy of transparency to
both Guest OSs and processes alike.

3.3 Akaros So Far
Akaros currently runs on x86 and SPARC V8. We support

SPARC to take advantage of the RAMP [47] platform, which is
used to design novel architecture features and is in use in the Parlab
at UC Berkeley. We implemented MCPs and wrote several user-
space threading and event handling libraries to handle two-level
scheduling and threads that would like to block on syscalls. Ap-
plications can write their own simple scheduler, or use our pthread
scheduler, without worrying about the complexities of the MCP in-
terface.

We ported GNU libc to Akaros, support dynamically and stati-
cally linked ELF executables, and provide thread-local storage (TLS).
We also have an initial implementation of ext2. Block drivers and
the networking stack are being developed. In the future, we plan to
support the Mesos [28] cluster-management software, Intel
TBB [39], a JVM for Hadoop, and a Map-Reduce framework. Ad-
ditionally, we plan to evaluate a variety of datacenter applications
such as high-performance web servers, key-value stores, etc. We
believe these applications will benefit from the more transparent
abstractions and better resource isolation in Akaros.

You can check out the latest development of Akaros at
http://akaros.cs.berkeley.edu and
git://akaros.cs.berkeley.edu/akaros.git.

4. RELATED WORK
Building new operating systems for specialized purposes in large

computing facilities is not novel. Specifically, custom OSs have
thrived in high performance computing (HPC) [34, 40]. For ex-
ample, Kitten [31] is a lightweight kernel that typically runs on
the compute nodes of supercomputers. Kitten focuses on reducing
kernel interference and maximizing performance. Many of our ab-
stractions, especially the many-core process would work well for
HPC applications and could be built into the HPC OSs. Likewise,
Akaros could run in an HPC cluster, as long as the appropriate hard-
ware and network protocols were supported.

The fos [50] system is an operating system designed for the
cluster. It presents a single-image abstraction for a cluster of ma-
chines, and would require the entire cluster to run fos to be effec-
tive. Akaros strives to provide compatibility at a network protocol
level, allowing incremental deployment in datacenters. Notably,
we envision data-intensive and processing-intensive nodes to run
Akaros, while the nodes on the control plane (e.g. GFS master,
Hadoop scheduler) to run commodity OSs.

There are other recent operating systems designed for many-core
architectures. Corey [12] was an exokernel that improves on kernel
scalability by reducing sharing to the bare minimum desired by an
application. Barrelfish and its multikernel [10] are designed for het-
erogeneous hardware and structure the OS as a distributed system,
with message passing and replicated operating system state. We do
not treat the OS as a distributed system; instead we have a small
set of cores (the low-latency cores) make decisions for other cores.
Akaros’s state is global, much like in Linux. Although global state
sounds like a potential problem, researchers have analyzed Linux’s
VFS and determined a few bottlenecks that can be removed [11].
More importantly, Linux has its own set of VFS scalability patches
that they have been working on for a while [1, 5]. Kernel scal-
ability is a large concern of ours, but unlike these other systems,
we focus more on abstractions for enabling high-performance par-
allel applications. Furthermore, Akaros should scale much better
than systems with more traditional process models because there
are no kernel tasks or threads underlying each thread of a process
and because we partition resources.

http://akaros.cs.berkeley.edu
git://akaros.cs.berkeley.edu/akaros.git


Mesos [28] is a cluster management platform for distributed ap-
plications and frameworks. This is complementary to our work.
Our focus on resource isolation and two-level resource manage-
ment should provide better support for Mesos and similar frame-
works. Our kernel scheduler will leverage their work in two ways.
First, we can implement a node-local Dominant Resource Fairness
scheduler [23] to fairly manage heterogeneous resources, as dis-
cussed in Section 2.6. Second, when a node is a member of a Mesos
cluster, the kernel scheduler can simply “pass-through” and enact
the decisions made by the datacenter management software.

We agree with some of the principles of Exokernel [20]. Both
systems expose information about the underlying hardware resour-
ces to the application writers to allow them to make the best de-
cisions. The Exokernel takes a more extreme view and advocates
for full application control in both policy and mechanism. We do
not want to “exterminate all abstractions” [19], rather we want new
abstractions that do not hide the performance aspects of the system
from the application. Applications should not need to write their
own libOS to utilize the system. Instead, they need useful APIs to
control their resources, with sensible defaults for resources that are
not critical for performance.

Our call for an asynchronous system call interface for higher per-
formance echoes that of others. We agree with Drepper [17] in
that it is necessary for Zero-Copy I/O, and with Soares et al. [44]
that it will help with cache behavior and IPC. System calls further
ought to be asynchronous because it allows applications to max-
imize outstanding I/Os and not lose their cores simply because a
thread makes a system call that might block.

Many of our other abstractions are related to previous work. Ex-
posing details of memory allocations is reminiscent of the POSIX
mincore() and mlock() calls. Allowing applications to con-
trol memory is inspired in many ways by ACPM [26]. Several
groups have looked at zero-copy I/O, including building it into ex-
isting operating systems [13, 18, 41]. Our model for resource pro-
visioning is grounded in a large body of prior work, mostly gener-
ated by research on multi-core operating systems and the real-time
community [24, 33, 35, 51]. Our abstractions go beyond their ini-
tial steps, and integrate these ideas into one cohesive system.

5. CONCLUSION
In this paper, we introduced several ideas and abstractions that

allow applications to maximize their efficiency, performance, and
predictability. We also discussed how datacenter nodes ought to run
customized operating systems to help applications to utilize the full
potential of the underlying hardware. We plan to investigate these
ideas further in the context of the Akaros operating system. In the
future, we hope to both deploy these ideas and discover new ideas
to support the next generation of datacenter applications, following
our general philosophy of transparency of the software stack.
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