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Abstract
The emergence of many-core architectures necessitates
a redesign of operating systems, including the interfaces
they expose to an application. We propose a new operat-
ing system, called ROS, designed specifically to address
many limitations of current OSs as we move into the
many-core era. Our goals are (1) to provide better sup-
port for parallel applications for both high-performance
and general purpose computing, and (2) to scale the ker-
nel to thousands of cores. In this paper, we focus on the
process model and resource management mechanisms of
ROS. We expand the traditional process model to include
the notion of a ‘many-core’ process designed to naturally
support parallel applications. Additionally, we discuss
our method of resource management that builds on the
ideas of Space-Time Partitioning presented in our previ-
ous work [16]. Central to our design is the notion that
protection domains should not necessarily be coupled
with resource management, and resource partitioning is
not necessarily coupled with resource allocation.

1 Introduction
Current operating systems were originally designed for
uniprocessor systems. These systems have had SMP sup-
port for years, but it was initially added with a small
number of nodes in mind. Today, Linux supports up to
4096 nodes in theory [15], but not in practice [8], and
the system is an evolution from the original SMP design.
The kernel itself has been modified to scale past previous
bottlenecks, but there has been nothing fundamentally
different for the many-core era. For example, every node
potentially runs all of the kernel code and participates
equally in the management of resources and scheduling.
Nor is it built with explicit support for parallel processes.

Parallel applications are performance sensitive to the
underlying state of the machine and to any OS processing
that occurs. It is essential for the application to be able
to gather information about the state of the system and to
make requests that influence the decisions made by the
OS [3, 4]. Additionally, the system must contain mecha-
nisms to ensure performance isolation between compet-
ing applications.

In light of these problems, future many-core operating
systems will need to provide better support for parallel
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applications and scale well to a large number of cores.
One solution that has gained traction in recent years is
the use of virtual machine monitors (VMMs) to partition
an underlying machine’s physical resources. As pointed
out by Roscoe et al. [23], this approach has a number
of limitations that make it unappealing as a solution as
we move forward. VMMs introduce an extra layer that
negatively impacts performance and increases complex-
ity, especially with respect to process and memory man-
agement. Indeed, the original Disco [9] paper that kick-
started the VM trend acknowledges that virtual machines
only emerged as a solution because we don’t yet know
how to build scalable operating systems.

Thus, we believe the many-core transition is a rare op-
portunity to revisit basic OS technologies with a chance
for high impact. We propose a new many-core OS, called
ROS, designed from the ground up to provide better sup-
port for parallel applications and improved kernel scal-
ability; an early prototype of ROS already runs simple,
parallel applications up to 16 cores on Intel Core i7 and
64 cores on our FPGA-based hardware emulator [25].
Although a number of other operating systems have be-
gun to emerge that address similar issues [7, 8, 31], each
focuses it attention on different aspects in the space, and
none of them jointly addresses our two stated goals.

In this paper, we focus specifically on a new process
abstraction we call the ‘many-core‘ process (MCP) and
discuss how we manage resources given this abstraction.
Central to our design is the notion that protection do-
mains are not necessarily coupled with resource manage-
ment. Furthermore, resources are partitioned as a means
of provisioning (as opposed to allocation), giving the sys-
tem more freedom to utilize these resources when not in
use. These abstractions make it possible to provide per-
formance isolation and scalability without the overhead
of using a virtual machine style interface.

Given this model, it is possible to naturally build a
number of applications that are either awkward or im-
possible to implement using current operating system ab-
stractions. Examples include (1) a class of HPC applica-
tions that contain an interactive or real-time element, (2)
a parallel browser structured for better security and re-
source isolation [30], and (3) a more flexible resource
management scheme for web applications. In Section 4,
we describe each of these examples in more detail and
explain how they would be implemented using MCPs
and resource partitioning.
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Figure 1: On the left is a traditional 1:1 threading model
with each user-space thread mapped onto a kernel thread
scheduled by the kernel. On the right is our MCP model
with the kernel scheduling physical cores and user-space
scheduling the threads that run on them.

2 A New Process Abstraction
Processes in ROS share many similarities with traditional
processes. They run in the lowest privilege mode, are
the unit of protection and control in the kernel, commu-
nicate with each other, and are executing instances of a
program.

We extend this model in the following ways. These
changes are motivated by what is lacking in current SMP
operating systems: direct support for parallel processes
and kernel scalability. We call this new abstraction the
‘many-core’ process (MCP).

• Resources, such as cores and memory, are explicitly
granted and revoked. The kernel exposes information
about a process’s current resource allocation and the
system’s utilization, and allows the process to make
requests based on this information.

• Most cores running a process’s address space are gang
scheduled; scheduling decisions are made at a coarser
granularity than with today’s systems.

• There are no kernel tasks or threads underlying each
thread of a process, unlike in a 1:1 or M:N threading
model. As shown in Figure 1, there is only one kernel
object per process, regardless of the number of cores a
process runs on.

• Traditionally blocking system calls are asynchronous
and non-blocking. A process will not lose a core (or
other granted resource) without being informed.

The OS provides the notion of a virtual multiproces-
sor, similar to scheduler activations [3]. A process can
request a block of cores, and the OS guarantees that all
cores allocated will run simultaneously [11]. Addition-
ally, the OS will not send unexpected interrupts to cores
allocated to a process, except when necessary for pre-
emption by higher priority processes.

There are many advantages to this approach for paral-
lel applications. Classic shared-memory synchronization

methods, such as spin-locks, depend on gang schedul-
ing for reasonable performance. By not servicing in-
terrupts on gang-scheduled cores, we eliminate jitter in
finely tuned applications’ runtimes. Since blocking sys-
tem calls are asynchronous, I/O concurrency is decou-
pled from processing concurrency and processes do not
need to request extra cores for I/O processing. For mem-
ory, processes have knowledge of which virtual pages are
resident and page faults are reflected back to the process,
allowing it to maintain control over its cores. Finally,
the kernel scheduler does not decide which user thread
runs at a given time, removing its ability to adversely im-
pact performance through a poor decision. A user-level
scheduler, such as Lithe [21], can schedule its contexts
on the cores granted by the kernel.

We differ from scheduler activations in that there is
only one kernel object per process and that we alert
userspace before any of its cores are actually revoked.
Processes specify how they wish to be informed about
these revocations (as well as any other system events,
such as page faults or memory pressure). Whenever the
kernel revokes a resource, it will notify the process by
running a handler specified by the process. We discuss
resources in more detail in Section 3.

These changes enable the kernel to scale well as the
number of cores increases. Since we do not have a kernel
task underlying every userspace context, we can man-
age the entire parallel process as one entity. We only
need one process descriptor, instead of n. Because we
are not scheduling n independent kernel tasks, we can
remove per-core run queues and avoid the overhead of
load-balancing them. Instead of each core deciding what
to run, a subset of the cores will direct the execution of
processes throughout the system. This limits any con-
sensus or decision making to a small number of cores,
instead of coordinating with n other cores. This model
could extend to heterogeneous hardware, where cores
with more processing power direct the execution of sev-
eral smaller cores.

The changes to the process abstraction also result in
memory savings. The kernel does not need a stack for
every context of every process, which will be impor-
tant for parallel processes that request large amounts of
cores. The core kernel is event based and uses (essen-
tially) continuations to store per-task state, as previously
done in Capriccio [28]. This enables many concurrent
kernel events, such as blocking I/Os, without requiring
large amounts of memory for stack space.

Not all processes need to run in parallel on their
cores all the time. A process is gang-scheduled at a
coarse granularity; however, applications may want fast
response times for short blocks of code. For example,
UI events and packet acknowledgements need to execute
quickly, and may want to avoid the overhead of context
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switching in all of a process’s cores. To support this,
processes can register handlers that will run indepen-
dently from the gang, with access to the entire address
space. These handlers will run for certain events, but
with a very short timeslice and possibly with the gang
descheduled. This decouples bulk processing from in-
teractive responses. Additionally, many processes need
neither multiple cores nor resource guarantees, and the
MCP abstraction has a single-core state to handle this. A
more detailed explanation of the MCP model is beyond
the scope of this paper.

3 Managing Resources
We introduce a general mechanism for partitioning re-
sources for guaranteed use by a process1. A resource
is defined as anything sharable in the system, including
cores, RAM, cache, on-and off-chip memory bandwidth,
access to I/O devices, etc2. These resources can be parti-
tioned in both space and time, allowing processes to de-
clare their resource needs in both dimensions [16]. For
example, a process might indicate that it needs exclusive
access to 25 cores 50% of the time, or that it requires
75% of the on-chip memory bandwidth 25% of the time.
For the purposes of this paper, we focus our attention
solely on the spatial dimension of partitioning.

In our model, resource parititons serve to provision a
set of resources to a group of processes rather than al-
locate them to a particular process. When creating a re-
source parition, the system does not actually hand out
resources to the requesting process. Instead, it provides
a guarantee that the resources contained in that parti-
tion will be made available to the process whenever it
puts in a request for them. In the mean time, the sys-
tem can allocate these resources to other processes, un-
der the assumption that they may be revoked at any time.
Of course, processes can always request more resources
than have been provisioned for them, but there is no guar-
antee that they will be able to hold onto those resources if
the system becomes over-provisioned. Treating resource
partitions in this way leads to better utilization of system
resources and reduces the hard problem of deciding when
to revoke a resource from a process to the simpler prob-
lem of deciding which processes are allowed to create a
resource partition in the first place (i.e. admission con-
trol). Scheduling policy decisions such as which process
to revoke a resource from, or how to discourage appli-
cations from hoarding resources are beyond the scope of
this paper.

1Although we currently use processes as the entity to which we
allocate resources, any reasonable resource principle could be used [5].

2We implicitly assume that a mechanism exists to control the parti-
tioning of resources. Some of these mechanisms may already be avail-
able (e.g. cores, RAM, caches via page coloring), while others may
only be available in future hardware (e.g. on-chip memory bandwidth).
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Figure 2: Example partitioning of 64 cores to a set of
processes over time. At each time step some number of
processes exist in the system (as indicated by the circles
on the left), and some number of partitions are set up to
contain a list of processes that can pull from them (as
indicated by the bars on the right). P* is shorthand for
the list of all processes that currently exist in the system.

Using our model, resource partitions may be created in
one of two ways: (1) programmatically by some process
in the process hierarchy, or (2) by a system administrator
who wants fine-grained control over how resources are
partitioned throughout the system. Since each partition
represents a provision of resources (rather than an allo-
cation), an entire list of processes can be associated with
each partition rather than just a single process. This list
denotes the set of processes that can pull resources from
that partition when making a request. Each resource is
partitioned separately, and the ability to associate a pro-
cess with a given partition is unconstrained, barring any
explicit security policy enforced by the system. By as-
sociating multiple processes with each provision of re-
sources, we essentially decouple the notion of a protec-
tion domain from a resource partition. As we show in
our example web application in Section 4, this decou-
pling helps simplify application design and improve per-
formance.

As a simple example, consider Figure 2, which shows
how one might spatially partition a set of 64 cores among
3 competing processes. At time 0, there is only one pro-
cess in the system, P0, and a single partition containing
all cores. At time 1, a second process, P1, has been cre-
ated and an 8 core partition has been set up from which
only P0 can pull. At time 2, P1 has been added to the
list of processes associated with the 8 core partition, and
a third process P2 has appeared. Finally, at time 3, a
second 8 core partition has been created with P2 being
the only process which can pull resources from it. Given
this example, if all cores were currently allocated to pro-
cess P2 at the end of Time 3, and a request for 8 cores
came in from process P0, those cores would be immedi-
ately revoked from P2 and given to P0. No matter how
many requests came in from other processes, however,
P2 would still be able to hold onto at least 8 cores, no
matter how many others it had to give up.
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In addition to partitioning, allocating, and revoking re-
sources, the system is also responsible for billing pro-
cesses for the resources they have been allocated. To
avoid being unnecessarily billed, processes are encour-
aged to voluntarily yield resources back to the system
when they are no longer in use. So long as their par-
titions do not change, handing them back to the system
should not adversely affect their performance. Moreover,
giving them back may actually provide opportunities for
increased energy efficiency [14]. Although not currently
implemented, we plan to support a scheme similar to the
one used by Resource Containers [5].

4 Examples
Here we present several parallel applications that will
benefit greatly from the efficiency of our process model
and the flexibility of our resource management scheme.

Music Application: First we discuss an interactive HPC
application that relies on real-time sensing, synthesis,
and playback of a musical instrument. This application
is highly interrupt driven, requires a large amount of re-
sources, and only needs access to its resources for very
short durations. However, it requires low-latency access
to its resources once it requests them. Using an MCP,
the music application can declare its resource needs by
provisioning their use at startup and only request them
whenever an interrupt comes in. While it holds its re-
sources it has exclusive access to them. Whenever the
application becomes idle, the system is able to allocate
its resources to other processes running in the system. In
general, real-time applications with unpredictable, bursty
loads can benefit from this model.

Parallel Browser: Browsers are emerging as the domi-
nant application platform for everyday client computing.
One of the challenges that current browsers face is the
ability to provide quality of service to ensure application
performance and prevent resource exhaustion. Moreover,
they typically rely on trust models that require not only
performance isolation, but also sandboxing and other se-
curity features. Recently, Meyerovich et al. have been
investigating ways of parallelizing web browsers for use
on many-core architectures [13]. Using MCPs and the
ability to provision resources, the operating system can
provide quality of service for different components of the
application as well as independently isolate them for se-
curity reasons. Additionally, by using kernel-managed
processes to run each component of the browser, misbe-
having plugins can be uniquely identified and destroyed
by an external process (e.g. the shell).

Web Applications: Although we did not specifically de-
sign our system to support web applications, its flexible
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Figure 3: Summary of System Interfaces For Resource
Multiplexing

resource management policy can help solve a variety of
issues related to their usage. Specifically, the ability to
associate multiple untrusting processes with a single re-
source partition offers several useful features. For exam-
ple, web applications relying on a database server can
run that server in a separate process while still allowing
it to share its resource partition. This ensures that the
server always has some resources available to service its
requests. In a more complex scenario, two web applica-
tions might be sharing access to a single database server
with one of them constantly overloading the server with
requests. These requests might block the other applica-
tion from ever making progress. In this situation, the
blocked application could temporarily allow the server
to allocate resources from its own resource partition to
service its requests.

5 Related Work
Many previous solutions have been proposed to multi-
plex and partition system resources. We categorize them
based on the interface they present and the amount of in-
formation they expose to the client of the interface. The
name of the client depends on the interface (e.g. a pro-
cess for a system call interface or a guest OS for a vir-
tual machine). Information exposure includes details of
the underlying system and actual resource usage, such as
resident memory pages and CPU utilization, both for a
client and for other clients in the system. Parallel appli-
cations are sensitive to the underlying state of the system
and require this information exposure. Figure 3 summa-
rizes these approaches along two axes.

Some solutions reveal very little about the state of the
overall system to applications. Apache VHost [1] and
language-based virtual machines [2] abstract away the
underlying hardware completely. Hardware-based vir-
tual machines (including paravirtualized machines) [6,9]
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have an interface much closer to the hardware. In fact,
it is often their design goal to avoid revealing knowledge
about the existence of other applications on the system.
Because of this property, data centers use hardware vir-
tual machines such as VMware and Xen to run different
applications in different VMs to obtain better security
and performance isolation. Typically, each guest OS is
assigned a share of system resources. The applications
running in a single guest OS instance can only use the
resources assigned to it. This unnecessarily binds the
protection domain to resource management. Addition-
ally, guest OSs have very little information about over-
all system utilization or even their own resources. Some
VMs with performance enhancements provide mecha-
nisms such as the balloon driver [29], which indicates
memory pressure to the guest.

Exokernel [10] allows the application writers to spe-
cialize a lib-os to suit the application’s needs. We are
heavily influenced by its principle of exposing informa-
tion about the underlying system to the application writ-
ers to allow them to make the best decisions. However,
this information is limited to a specific lib-OS; a lib-OS is
unaware of the overall resource utilization of the system.
Compared to this previous work, ROS strives to main-
tain an interface closer to a traditional operating system.
Our system interface exposes information about system
utilization and an application’s resources, and it allows
applications to make requests based on that information.

Systems such as VServer [24] and Solaris Zones [22]
provide resource partitioning within an operating sys-
tem. Their information exposure is similar to a tradi-
tional POSIX system, such as the POSIX memory API,
procfs, and top. However, they fully isolate other as-
pects of the operating system such as information about
resource usage and namespace management. This is ap-
propriate for the purpose of server consolidation, but for
a single user client OS, we consider a shared namespace
and configuration to be more useful. A unified names-
pace simplifies a desktop environment with applications
that may interact with each other. Zones provides physi-
cal resource partitioning, but it is static, hides all knowl-
edge of overall system resources, and is unable to utilize
idle resources for background tasks.

Our model for resource partitioning is grounded in a
large body of prior work, mostly generated by research
on multi-core operating systems and the real-time com-
munity [12, 18, 19, 32]. In particular, our model provides
an abstraction similar to that of a Software Performance
Unit (SPU) [26], with a few distinctions. SPUs rely on
processes to actively share unused resources with back-
ground tasks, instead of allowing the system to manage
these resources. We do not grant a process access to the
resources contained in its resource partitions, until the
process explicitly requests them. Instead, resource par-

titions serve as a provision of resources similar to the
notion of a ‘reserve’ [17]. However, they are designed
for predictable applications that have a predetermined
schedule.

The notion that protection domains should be decou-
pled from resource management is similar to resource
containers [5]. Resource containers allow accurate ac-
counting of resource utilization, independent of the ex-
ecution context. Our resource provisioning schemem is
complementary to their approach.

Recently, a number of other operating systems have
been proposed for many-core platforms. Corey [8] is
an exo-kernel based on kernel scalability. The Multik-
ernel [7] focuses on scalability in a NUMA and possi-
bly heterogeneous environment, where they scale by dis-
tributing state and running message passing algorithms
to achieve consensus. Helios [20] focuses on seemlessly
running on heterogeneous hardware. We do not explic-
itly focus on NUMA or heterogenity, but there is nothing
that prevents our techniques from working in that envi-
ronment. None of these share our focus of directly sup-
porting parallel applications.

6 Conclusion
We propose a new OS for many-core with direct sup-
port for parallel applications and a scalable kernel. Our
design is based on the notion of a ‘many-core’ process
abstraction and the decoupling of protection domains
from resource partitioning. Furthermore, we provide a
resource management scheme based on resource provi-
sioning, which enables system-wide, efficient account-
ing and utiliziation of resources. We provide a number
of example applications which can benefit directly from
our new design, and believe that many more will emerge
as we continue to iterate on our design. One application
scenario that seems promising is the introduction of spot
pricing from Amazon EC2 [27]. Under this model, cus-
tomers have the ability to bid money for access to spare
virtual machine resources, but they must be prepared to
be evicted at any time if the system becomes overpro-
visioned. Our operating system will be able to support
virtual machines as clients, and our model of resource
management seems like a perfect fit for differentiated
services.
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[24] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son. Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors. SIGOPS Oper. Syst. Rev.,
41(3):275–287, 2007.

[25] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, D. Patterson, and K. Asanovic.
RAMP Gold: An FPGA-based Architecture Simulator for Multiprocessors.
In 4th Workshop on Architectural Research Prototyping (WARP-2009), at
36th International Symposium on Computer Architecture (ISCA-36), June
2009.

[26] B. Verghese, A. Gupta, and M. Rosenblum. Performance isolation: sharing
and isolation in shared-memory multiprocessors. In ASPLOS-VIII: Pro-
ceedings of the eighth international conference on Architectural support
for programming languages and operating systems, pages 181–192, New
York, NY, USA, 1998. ACM.

[27] W. Vogels. All things distributed: Werner vogels’ weblog on
building scalable and robust distributed systems., December 2009.
http://www.allthingsdistributed.com/2009/12/
amazon_ec2_spot_instances.html.

[28] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio:
Scalable threads for internet services. In SOSP ’03, 2003.

[29] C. A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[30] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Ven-
ter. The multi-principal os construction of the gazelle web browser. In
Proceedings of the 18th USENIX Security Symposium, Montreal, Canada,
August 2009.

[31] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case
for a scalable operating system for multicores. SIGOPS Oper. Syst. Rev.,
43(2):76–85, 2009.

[32] D. Wright. Cheap cycles from the desktop to the dedicated cluster: combin-
ing opportunistic and dedicated scheduling with Condor. In Proceedings of
the Linux Clusters: The HPC Revolution conference, Champaign - Urbana,
IL, June 2001.

6


